Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.638
1.
Am J Bot ; 111(4): e16308, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581167

PREMISE: Better understanding of the relationship between plant specialized metabolism and traditional medicine has the potential to aid in bioprospecting and untangling of cross-cultural use patterns. However, given the limited information available for metabolites in most plant species, understanding medicinal use-metabolite relationships can be difficult. The order Caryophyllales has a unique pattern of lineages of tyrosine- or phenylalanine-dominated specialized metabolism, represented by mutually exclusive anthocyanin and betalain pigments, making Caryophyllales a compelling system to explore the relationship between medicine and metabolites by using pigment as a proxy for dominant metabolism. METHODS: We compiled a list of medicinal species in select tyrosine- or phenylalanine-dominant families of Caryophyllales (Nepenthaceae, Polygonaceae, Simmondsiaceae, Microteaceae, Caryophyllaceae, Amaranthaceae, Limeaceae, Molluginaceae, Portulacaceae, Cactaceae, and Nyctaginaceae) by searching scientific literature until no new uses were recovered. We then tested for phylogenetic clustering of uses using a "hot nodes" approach. To test potential non-metabolite drivers of medicinal use, like how often humans encounter a species (apparency), we repeated the analysis using only North American species across the entire order and performed phylogenetic generalized least squares regression (PGLS) with occurrence data from the Global Biodiversity Information Facility (GBIF). RESULTS: We hypothesized families with tyrosine-enriched metabolism would show clustering of different types of medicinal use compared to phenylalanine-enriched metabolism. Instead, wide-ranging, apparent clades in Polygonaceae and Amaranthaceae are overrepresented across nearly all types of medicinal use. CONCLUSIONS: Our results suggest that apparency is a better predictor of medicinal use than metabolism, although metabolism type may still be a contributing factor.


Caryophyllales , Plants, Medicinal , Caryophyllales/metabolism , Caryophyllales/genetics , Plants, Medicinal/metabolism , Medicine, Traditional , Phylogeny , Tyrosine/metabolism , Betalains/metabolism , Phenylalanine/metabolism
2.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619879

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Environmental Pollutants , Fatty Liver , Liver Diseases, Alcoholic , Polychlorinated Biphenyls , Male , Mice , Animals , Multiomics , Mice, Inbred C57BL , Ethanol/toxicity , Ethanol/metabolism , Liver/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Zinc/metabolism , Tyrosine/metabolism
3.
Biophys Chem ; 309: 107234, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603989

Activation of heterotrimeric G-proteins (Gαßγ) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of Gα that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce Gα activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the Gαi3, a subtype of Gα-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix αF, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated Gαi3. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.


Guanine Nucleotide Exchange Factors , Signal Transduction , Phosphorylation , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , GTP-Binding Proteins/metabolism , Tyrosine/metabolism
4.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38657042

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Endocytosis , Long-Term Synaptic Depression , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Receptors, AMPA , Receptors, Metabotropic Glutamate , Receptors, AMPA/metabolism , Animals , Phosphorylation , Endocytosis/physiology , Long-Term Synaptic Depression/physiology , Receptors, Metabotropic Glutamate/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Rats , Tyrosine/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Synapses/metabolism , Mice , Humans , Neurons/metabolism
5.
Sci Rep ; 14(1): 8695, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622194

AMPylation is a biologically significant yet understudied post-translational modification where an adenosine monophosphate (AMP) group is added to Tyrosine and Threonine residues primarily. While recent work has illuminated the prevalence and functional impacts of AMPylation, experimental identification of AMPylation sites remains challenging. Computational prediction techniques provide a faster alternative approach. The predictive performance of machine learning models is highly dependent on the features used to represent the raw amino acid sequences. In this work, we introduce a novel feature extraction pipeline to encode the key properties relevant to AMPylation site prediction. We utilize a recently published dataset of curated AMPylation sites to develop our feature generation framework. We demonstrate the utility of our extracted features by training various machine learning classifiers, on various numerical representations of the raw sequences extracted with the help of our framework. Tenfold cross-validation is used to evaluate the model's capability to distinguish between AMPylated and non-AMPylated sites. The top-performing set of features extracted achieved MCC score of 0.58, Accuracy of 0.8, AUC-ROC of 0.85 and F1 score of 0.73. Further, we elucidate the behaviour of the model on the set of features consisting of monogram and bigram counts for various representations using SHapley Additive exPlanations.


Protein Processing, Post-Translational , Tyrosine , Tyrosine/metabolism , Amino Acid Sequence , Adenosine Monophosphate/metabolism , Threonine/metabolism
6.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605285

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Alkaloids , Plants, Medicinal , Stephania , Stephania/chemistry , Stephania/metabolism , Plants, Medicinal/metabolism , Chromatography, Liquid/methods , Lignin/metabolism , Tandem Mass Spectrometry , Plant Breeding , Gene Expression Profiling , Transcriptome , Alkaloids/metabolism , Starch/metabolism , Isoquinolines/metabolism , Tyrosine/metabolism , Lipids , Gene Expression Regulation, Plant
7.
Sci Adv ; 10(15): eadk8157, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38598628

Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.


Antibodies, Bispecific , Immunoglobulin G , Dimerization , Tyrosine/metabolism , Serine/metabolism , Computational Biology
8.
Scand J Immunol ; 99(5): e13358, 2024 May.
Article En | MEDLINE | ID: mdl-38605535

Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.


Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , src Homology Domains , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Jurkat Cells , Adaptor Proteins, Signal Transducing/metabolism , Tyrosine/metabolism , Protein Binding , src-Family Kinases/metabolism
9.
PLoS One ; 19(3): e0299999, 2024.
Article En | MEDLINE | ID: mdl-38451992

Rice blast, caused by rice blast fungus (Magnaporthe oryzae), is a global threat to food security, with up to 50% yield losses. Panicle blast is a severe form of rice blast, and disease responses vary between cultivars with different genotypes. Reactive oxygen species (ROS)-mediated signaling reactions and the phenylpropanoid pathway are important defense mechanisms involved in recognizing and resisting against fungal infection. To understand rice-M. oryzae interactions in resistant and susceptible cultivars, we determined dynamic changes in the activities of five defense-related enzymes in resistant cultivar jingsui 18 and susceptible cultivar jinyuan 899 infected with M. oryzae from 4 to 25 days after infection. We then performed untargeted metabolomics analyses to profile the metabolomes of the cultivars under infected and non-infected conditions. Dynamic changes in the activities of five defense-related enzymes were closely related to panicle blast resistance in rice. Metabolome data analysis identified 634 differentially accumulated metabolites (DAMs) between resistant and susceptible cultivars following infection, potentially explaining differences in disease response between varieties. The most enriched DAMs were associated with lipids and lipid-like molecules, phenylpropanoids and polyketides, organoheterocyclic compounds, organic acids and derivatives, and lignans, neolignans, and related compounds. Multiple metabolic pathways are involved in resistance to panicle blast in rice, including biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, phenylpropanoid biosynthesis, arachidonic acid metabolism, arginine biosynthesis, tyrosine metabolism, tryptophan metabolism, tyrosine and tryptophan biosynthesis, lysine biosynthesis, and oxidative phosphorylation.


Ascomycota , Magnaporthe , Oryza , Disease Resistance/genetics , Oryza/genetics , Magnaporthe/genetics , Tryptophan/metabolism , Tyrosine/metabolism , Plant Diseases/microbiology
10.
Biomolecules ; 14(3)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38540680

Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.


Receptor Protein-Tyrosine Kinases , Signal Transduction , GRB2 Adaptor Protein/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Tyrosine/metabolism , Receptors, Cell Surface/metabolism , Son of Sevenless Proteins , Protein Binding , Phosphorylation
11.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38532423

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Receptors, Antigen, T-Cell , Receptors, TNF-Related Apoptosis-Inducing Ligand , Humans , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Phosphorylation , Lymphocyte Activation , Tyrosine/metabolism
12.
J Agric Food Chem ; 72(11): 5766-5776, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38447044

The aromatic amino acids tryptophan, phenylalanine, and tyrosine are targets for oxidation during food processing. We investigated whether S. cerevisiae can use nonproteinogenic aromatic amino acids as substrates for degradation via the Ehrlich pathway. The metabolic fate of seven amino acids (p-, o-, m-tyrosine, 3,4-dihydroxyphenylalanine (DOPA), 3-nitrotyrosine, 3-chlorotyrosine, and dityrosine) in the presence of S. cerevisiae was assessed. All investigated amino acids except dityrosine were metabolized by yeast. The amino acids 3-nitrotyrosine and o-tyrosine were removed from the medium as fast as p-tyrosine, and m-tyrosine, 3-chlorotyrosine, and DOPA more slowly. In summary, 11 metabolites were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). DOPA, 3-nitrotyrosine, and p-tyrosine were metabolized predominantly to the Ehrlich alcohols, whereas o-tyrosine and m-tyrosine were metabolized predominantly to α-hydroxy acids. Our results indicate that nonproteinogenic aromatic amino acids can be taken up and transaminated by S. cerevisiae quite effectively but that decarboxylation and reduction to Ehrlich alcohols as the final metabolites is hampered by hydroxyl groups in the o- or m-positions of the phenyl ring. The data on amino acid metabolism were substantiated by the analysis of five commercial beer samples, which revealed the presence of hydroxytyrosol (ca. 0.01-0.1 mg/L) in beer for the first time.


Amino Acids, Aromatic , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Amino Acids, Aromatic/metabolism , Tandem Mass Spectrometry , Tyrosine/metabolism , Amino Acids/metabolism , Dihydroxyphenylalanine/metabolism , Alcohols/metabolism
13.
Nat Commun ; 15(1): 2202, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38485927

Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Tyrosine/analogs & derivatives , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , Tyrosine/metabolism , Viral Fusion Proteins , Respiratory Syncytial Virus Infections/prevention & control
14.
Mar Biotechnol (NY) ; 26(2): 364-379, 2024 Apr.
Article En | MEDLINE | ID: mdl-38483671

Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.


Crassostrea , Melanins , Pigmentation , Transcriptome , Animals , Melanins/metabolism , Melanins/biosynthesis , Crassostrea/genetics , Crassostrea/metabolism , Pigmentation/genetics , Tyrosine/metabolism , Animal Shells/metabolism , Signal Transduction , Gene Expression Profiling , Cyclic AMP/metabolism
15.
Theriogenology ; 219: 167-179, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38437767

Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90ß). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.


Semen , Sperm-Ovum Interactions , Male , Swine , Animals , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Spermatozoa/metabolism , Oocytes , Zona Pellucida/metabolism , Albumins/metabolism , Tyrosine/metabolism
16.
Sci Adv ; 10(13): eadj7251, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38536914

We recently developed a heterobifunctional approach [phosphorylation targeting chimeras (PhosTACs)] to achieve the targeted protein dephosphorylation (TPDephos). Here, we envisioned combining the inhibitory effects of receptor tyrosine kinase inhibitors (RTKIs) and the active dephosphorylation by phosphatases to achieve dual inhibition of kinases. We report an example of tyrosine phosphatase-based TPDephos and the effective epidermal growth factor receptor (EGFR) tyrosine dephosphorylation. We also used phosphoproteomic approaches to study the signaling transductions affected by PhosTAC-related molecules at the proteome-wide level. This work demonstrated the differential signaling pathways inhibited by PhosTAC compared with the TKI, gefitinib. Moreover, a covalent PhosTAC selective for mutated EGFR was developed and showed its inhibitory potential for dysregulated EGFR. Last, EGFR PhosTACs, consistent with EGFR dephosphorylation profiles, induced apoptosis and inhibited cancer cell viability during prolonged PhosTAC treatment. PhosTACs showcased their potential of modulating RTKs activity, expanding the scope of bifunctional molecule utility.


ErbB Receptors , Proteolysis Targeting Chimera , Apoptosis , Cell Line, Tumor , Phosphorylation , Signal Transduction , Tyrosine/metabolism , Humans , Proteolysis Targeting Chimera/metabolism
17.
Redox Biol ; 71: 103102, 2024 May.
Article En | MEDLINE | ID: mdl-38430684

Peroxidasin (PXDN) is a secreted heme peroxidase that catalyzes the oxidative crosslinking of collagen IV within the extracellular matrix (ECM) via intermediate hypobromous acid (HOBr) synthesis from hydrogen peroxide and bromide, but recent findings have also suggested alternative ECM protein modifications by PXDN, including incorporation of bromide into tyrosine residues. In this work, we sought to identify the major target proteins for tyrosine bromination by HOBr or by PXDN-mediated oxidation in ECM from mouse teratocarcinoma PFHR9 cells. We detected 61 bromotyrosine (BrY)-containing peptides representing 23 proteins in HOBr-modified ECM from PFHR9 cells, among which laminins displayed the most prominent bromotyrosine incorporation. Moreover, we also found that laminin α1, laminin ß1, and tubulointerstitial nephritis antigen-like (TINAGL1) contained BrY in untreated PFHR9 cells, which depended on PXDN. We extended these analyses to lung tissues from both healthy mice and mice with experimental lung fibrosis, and in lung tissues obtained from human subjects. Analysis of ECM-enriched mouse lung tissue extracts showed that 83 ECM proteins were elevated in bleomycin-induced fibrosis, which included various collagens and laminins, and PXDN. Similarly, mRNA and protein expression of PXDN and laminin α/ß1 were enhanced in fibrotic mouse lung tissues, and also in mouse bone-marrow-derived macrophages or human fibroblasts stimulated with transforming growth factor ß1, a profibrotic growth factor. We identified 11 BrY-containing ECM proteins, including collagen IV α2, collagen VI α1, TINAGL1, and various laminins, in both healthy and mouse fibrotic lung tissues, although the relative extent of tyrosine bromination of laminins was not significantly increased during fibrosis. Finally, we also identified 7 BrY-containing ECM proteins in human lung tissues, again including collagen IV α2, collagen VI α1, and TINAGL1. Altogether, this work demonstrates the presence of several bromotyrosine-modified ECM proteins, likely involving PXDN, even in normal lung tissues, suggesting a potential biological function for these modifications.


Bromates , Extracellular Matrix Proteins , Pulmonary Fibrosis , Humans , Animals , Mice , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Bromides/adverse effects , Bromides/metabolism , Laminin/genetics , Laminin/metabolism , Extracellular Matrix/metabolism , Lung/metabolism , Peroxidasin , Collagen Type IV/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Tyrosine/metabolism
18.
Chem Biol Interact ; 391: 110900, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38325522

Lung cancer is a highly prevalent and lethal malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of cancer-related deaths. In this study, the effects of co-treatment with melatonin and ortho-topolin riboside (oTR) on the cell viability and alteration of metabolites and transcripts were investigated in NSCLC cells using gas chromatography-mass spectrometry (GC-MS) and next-generation sequencing (NGS). The co-treatment of melatonin and oTR exhibited synergistic effects on the reduction of cell viability and alteration of metabolic and transcriptomic profiles in NSCLC cells. We observed that the co-treatment inhibited glycolytic function and mitochondria respiration, and downregulated glycine, serine and threonine metabolism alongside tyrosine metabolism in NSCLC cells. In the glycine, serine and threonine metabolism pathway, the co-treatment resulted in a significant 8.4-fold reduction in the expression level of the SDS gene, which encodes the enzyme responsible for the breakdown of serine to pyruvate. Moreover, co-treatment decreased the gene expression of TH, DDC, and CYP1A1 in tyrosine metabolism. Additionally, we observed that the co-treatment resulted in a significant 146.9-fold reduction in the expression of the DISC1 gene. The alteration in metabolites and transcript expressions might provide information to explain the cytotoxicity of co-treatment of melatonin and oTR in NSCLC cells. Our study presents insights into the synergistic anticancer effect of the co-treatment of melatonin and oTR, which could be a potential future therapeutic strategy for the treatment of NSCLC patients.


Carcinoma, Non-Small-Cell Lung , Cytokinins , Lung Neoplasms , Melatonin , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Melatonin/pharmacology , Melatonin/therapeutic use , Cell Survival , Metabolome , Glycine/metabolism , Glycine/pharmacology , Glycine/therapeutic use , Serine/metabolism , Threonine/metabolism , Tyrosine/metabolism , Cell Line, Tumor
19.
Int J Food Microbiol ; 415: 110631, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38402671

Hanseniaspora vineae exhibits extraordinary positive oenological characteristics contributing to the aroma and texture of wines, especially by its ability to produce great concentrations of benzenoid and phenylpropanoid compounds compared with conventional Saccharomyces yeasts. Consequently, in practice, sequential inoculation of H. vineae and Saccharomyces cerevisiae allows to improve the aromatic quality of wines. In this work, we evaluated the impact on wine aroma produced by increasing the concentration of phenylalanine, the main amino acid precursor of phenylpropanoids and benzenoids. Fermentations were carried out using a Chardonnay grape juice containing 150 mg N/L yeast assimilable nitrogen. Fermentations were performed adding 60 mg/L of phenylalanine without any supplementary addition to the juice. Musts were inoculated sequentially using three different H. vineae strains isolated from Uruguayan vineyards and, after 96 h, S. cerevisiae was inoculated to complete the process. At the end of the fermentation, wine aromas were analysed by both gas chromatography-mass spectrometry and sensory evaluation through a panel of experts. Aromas derived from aromatic amino acids were differentially produced depending on the treatments. Sensory analysis revealed more floral character and greater aromatic complexity when compared with control fermentations without phenylalanine added. Moreover, fermentations performed in synthetic must with pure H. vineae revealed that even tyrosine can be used in absence of phenylalanine, and phenylalanine is not used by this yeast for the synthesis of tyrosine derivatives.


Hanseniaspora , Wine , Wine/analysis , Fermentation , Saccharomyces cerevisiae/metabolism , Odorants/analysis , Phenylalanine/analysis , Phenylalanine/metabolism , Hanseniaspora/metabolism , Tyrosine/analysis , Tyrosine/metabolism
20.
Mol Cell Proteomics ; 23(3): 100733, 2024 Mar.
Article En | MEDLINE | ID: mdl-38342410

Nitrotyrosine, or 3-nitrotyrosine, is an oxidative post-translational modification induced by reactive nitrogen species. Although nitrotyrosine is considered a marker of oxidative stress and has been associated with inflammation, neurodegeneration, cardiovascular disease, and cancer, identification of nitrotyrosine-modified proteins remains challenging owing to its low stoichiometric levels in biological samples. To facilitate a comprehensive analysis of proteins and peptides containing nitrotyrosine, we optimized an immunoprecipitation-based enrichment workflow using a cell line model. The identification of proteins and peptides containing nitrotyrosine residues was carried out after peroxynitrite treatment of cell lysates, which generated modified nitrotyrosine residues on susceptible sites on proteins. We evaluated the efficacy of enriching nitrotyrosine-modified proteins and peptides by employing four different commercially available monoclonal antibodies directed against nitrotyrosine. LC-MS/MS analysis resulted in the identification of 1377 and 1624 nitrotyrosine-containing peptides from protein- and peptide-based enrichment experiments, respectively. Although the yield of nitrotyrosine-containing peptides was higher in experiments where peptides rather than proteins were enriched, we found a substantial proportion (37-65%) of identified nitrotyrosine-containing peptides contained nitrotyrosine at the N-terminus. However, in protein-based immunoprecipitation <9% of nitrotyrosine-containing peptides had nitrotyrosine modification at the N-terminus of the peptide. Overall, our study resulted in the identification of 2603 nitrotyrosine-containing peptides of which >2000 have not previously been reported. We synthesized 101 novel nitrotyrosine-containing peptides identified in our analysis and analyzed them by LC-MS/MS to validate our findings. We have confirmed the validity of 70% of these peptides, as they demonstrated a similarity score exceeding 0.7 when compared to peptides identified through experimental methods. Finally, we also validated the presence of nitrotyrosine modification on PKM and EF2 proteins in peroxynitrite-treated samples by immunoblot analysis. The large catalog presented in this study along with the workflow should facilitate the investigation of nitrotyrosine as an oxidative modification in a variety of settings in greater detail.


Peroxynitrous Acid , Tandem Mass Spectrometry , Tyrosine/analogs & derivatives , Chromatography, Liquid/methods , Proteins/chemistry , Peptides/chemistry , Tyrosine/metabolism , Antibodies
...